接地的重要性与接地方式
接地的含义:
电子设备的“地”通常有两种含义:一种是“大地”(安全地),另一种是“系统基准地”(信号地)。接地就是指在系统与某个电位基准面之间建立低阻的导电通路。“接大地”就是以地球的电位为基准,并以大地作为零电位,把电子设备的金属外壳、电路基准点与大地相连接。
接地方式
接地方式是指系统中各电路参考电位与接地点的连接关系。接地方式要根据电路系统的功能和特点、干扰源的种类和分布情况来采用某种接地方式或多种接地方式的综合应用。不正确的接地方式不但不能改善系统的电磁兼容性,反而会导致系统不能正常工作,所以在进行电子产品系统设计时,接地应作为重要的考虑对象。
把接地平面与大地连接,往往是出于以下考虑:
A、提高设备电路系统工作的稳定性;
B、静电泄放;
C、为工作人员提供安全保障。


接地的目的:
A、安全考虑,即保护接地;
B、为信号电压提供一个稳定的零电位参考点(信号地或系统地);
C、屏蔽接地。
基本的接地方式:电子设备中有三种基本的接地 方式:单点接地、多点接地、浮地。
A 单点接地
单点接地是整个系统中,只有一个物理点被定义为接地参考点,其他各个需要接地的点都连接到这一点上。
单点接地适用于频率较低的电路中(1MHZ以下)。若系统的工作频率很高,以致工作波长与系统接地引线的长度可比拟时,单点接地方式就有问题了。当地线的
长度接近于1/4波长时,它就象一根终端短路的传输线,地线的电流、电压呈驻波分布,地线变成了辐射天线,而不能起到“地”的作用。
为了减少接地阻抗,避免辐射,地线的长度应小于1/20波长。在电源电路的处理上,一般可以考虑单点接地。对于大量采用的数字电路的PCB,由于其含有丰富的高次谐波,一般不建议采用单点接地方式。
在这里插入图片描述
B 多点接地
工作频率高(>10MHz)的采用多点接地式。在该电路系统中,用一块接地平板代替电路中每部分各自的地回路。因为接地引线的感抗与频率和长度成正比,工作频率高时将增加共地阻抗,从而将增大共地阻抗产生的电磁干扰,所以要求地线的长度尽量短。采用多点接地时,尽量找最接近的低阻值接地面接地。此处电路板最好设计为多层电路(4层以上),提供一层作为地平面。
在这里插入图片描述
C 浮地
浮地是指设备地线系统在电气上与大地绝缘的一种接地方式。
由于浮地自身的一些弱点,不太适合一般的大系统中,其接地方式很少采用
关于接地方式的一般选取原则:
对于给定的设备或系统,在所关心的最高频率(对应波长为)入上,当传输线的长度L〉入,则视为高频电路,反之,则视为低频电路。根据经验法则,对于低于1MHZ的电路,采用单点接地较好;对于高于10MHZ,则采用多点接地为佳。对于介于两者之间的频率而言,只要最长传输线的长度L小于/20 入,则可采用单点接地以避免公共阻抗耦合。
在这里插入图片描述
其优点是该电路不受大地电性能的影响。浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。
其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。
D 混合接地
按需要选用单点及多点接地。
PCB中的大面积敷铜接地,其实就是多点接地,所以单面PCB也可以实现多点接地。
在这里插入图片描述
多层PCB大多为高速电路,地层的增加可以有效提高PCB的电磁兼容性,是提高信号抗干扰的基本手段。同样由于电源层和底层与不同信号层的相互隔离,减轻了PCB的布通率,同时也增加了信号间的干扰。
“地”是电子技术中一个很重要的概念。由于“地”的分类与作用有多种, 容易混淆,故总结下“地”的概念。
“接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。“地”的经典定义是“作为电路或系统基准的等电位点或平面”。
对于接地的一般选取原则如下:
(1)低频电路(1mhz),建议采用单点接地;
(2)高频电路(10MHZ),建议采用多点接地;
(3)高低频混合电路,混合接地
上一篇:接地概念与接地分类